
Development of All-Day Visual Inertial
Odometry with Infra-Red Sensors

Standarised Use of Quaternion for SO(3) Representation

Draft

By

Cheng Huimin

In fulfilment for B.Eng. Dissertation

Innovation & Design-Centric Programme
Department of Electrical and Computer Engineering

National University of Singapore

Supervised by
Dr. Gao Zhi Temasek Laboratories, NUS
Dr. Lin Feng Temasek Laboratories, NUS

2018

CONTENTS Draft — Tuesday 22nd May, 2018

Contents

1 SO(3): Rotations in Rigid-Body Motion 2

1.1 Axis-Angle Representation . 2

1.2 Matrix Representation . 3

1.3 Axis-Angle Represented in Matrix Form . 4

1.3.1 Convert Axis-Angle to Rotation Matrix (Rodrigues’ Formula) 5

1.3.2 Convert Axis-Angle to Rotation Matrix (Exponential Map) 5

2 SO(3) Represented by Quaternions 7

2.1 Motivations . 7

2.2 Two Definitions of Quaternion Multiplications . 7

2.3 Unit Quaternion and Axis-Angle Representation . 8

2.4 Double Quaternion Product as Rotation Group . 9

2.5 Activeness of Transformation . 10

2.5.1 Activeness of Rotation Matrix . 10

2.5.2 Standarising Notations . 11

2.6 Rotation Composition . 12

2.7 Some Example Applications . 13

Appendices 15

A Quaternion to Axis-Angle Conversion 15

B Quaternion to Rotation Matrix Conversion in C++ 16

1

1. SO(3): ROTATIONS IN RIGID-BODY MOTION Draft — Tuesday 22nd May, 2018

1 SO(3): Rotations in Rigid-Body Motion

Rigid-body motions (also known as special Euclidean transformations) preserve distances (inner
product) and orientations (cross product) [1, p. 20]. Among rigid-body motions in R3, we consider
a special type - rotations around the origin.

It is important to draw distinctions between rotation (representations) from the physical phe-
nomenon. Physical rotations follow a defined path: either following a smooth trajectory or a ir-
regular one, either rotating fraction of a round or multiple rounds. For a rotation representation
however, most of the time only the transformation from the initial orientation to the final
orientation is represented, disregarding the exact rotation path to fulfil the motion physically. In
the context of this paper, “rotation” takes the latter meaning.

In R3, the group of rotations around the origin is defined as the rotation group SO(3)[2, p. 13][1,
p. 24]. By definition:

Properties of Rotation Group SO(3)

1. Preserves origin

2. Preserves vector length (Euclidean distance)

3. Preserves relative vector orientation (i.e. handedness)

We could define an operator r() that satisfy the above properties:

r : R3 → R3;v → r(v) (v ∈ R3)

v′ = r(v) (1.1)

There are different ways to represent r(). For example, r() could be represented by Euler angles
(a set of three parameters α, β, γ which are often known as roll, pitch, yaw angles). It is closely
simulated to mechanical gimbal structure, but it suffers from the gimbal lock issues as well as
numerical instability. Therefore it is not in the scope of discussion here.

Another two important ways to represent rotation r() are axis-angle representation and matrix
representation. The matrix representation comes directly from the fact that rotation is a linear
transformation (proved by geometry or Rodrigues’ rotation formula).

1.1 Axis-Angle Representation

Axis-angle representation is arguably the most intuitive representation of a rotation. A rotation
can be expressed by a rotation axis and a rotation angle. The well known Rodrigues’ rotation
formula is:

x′ = x‖ + x⊥ cosφ+ (u× x sinφ) (1.2)

or its equivalent form

x′ = x cosφ+ (u× x) sinφ+ u(u · x)(1− cosφ) (1.3)

where x is the vector before rotation, and x′ is the vector after rotation. The rotation is defined by
the rotation axis u (unit vector) and rotation angle φ (right-hand rule).

2

1. SO(3): ROTATIONS IN RIGID-BODY MOTION Draft — Tuesday 22nd May, 2018

As mentioned, it is helpful to consider the axis u and angle φ not as the descriptions for the
physical rotation path, but merely a way to describe the transformation from the initial to the final
orientation. (i.e. The physical rotation in between may not follow the axis and angle defined.)
Furthermore, this representation allows us to represent rotations with multiple revolutions with |φ|
greater than π. Therefore, there is a multiple-to-one mapping between axis-angle representation and
the rotation group SO(3).

Therefore, to summarise:

Properties of Axis-Angle Representation:

1. Axis-angle representation obeys right-hand rule (positive φ corresponds to anticlock-
wise rotation);

2. The formula proves that r() is a linear transformation, since it is defined from the
scalar and vector products only [2, p. 15].

3. There is a multiple-to-one mapping between axis-angle representation (u, φ) to rota-
tion group SO(3).

Notice that axis-angle representation works directly with vectors, without relying on matrix oper-
ations. Nevertheless, we could show that such representation could be converted to matrix form,
since it is a linear transformation after all. Similarly, axis-angle representation could be converted
to quaternion form as well.

1.2 Matrix Representation

All linear transformations could be represented by matrix multiplications, so does the rotation
transformation r(). Specifically, rotation r() in R3 and can be represented by a matrix R ∈ R3×3.

In addition, rotation preserves length and orientation which makes the rotation matrix R orthogonal
with det(R) = +1. Such group of R is called special orthogonal matrices. There exists a one-to-one
mapping between R and r(). In fact, SO(3) is often defined using such matrices R.

r(v) = Rv (1.4)

Properties of Rotation Matrices R

1. The rotation matrix preserve relative orientation (i.e. handedness) of the frame [3,
p. 69].

2. Product of two rotation matrices and inverse of a rotation matrix produce another
rotation matrix.

3. The terms rotation group SO(3) and rotation matrices are interchangeable. Every
rotation in the rotation group can be represented by a unique rotation matrix R.

We proceed to define the elements in R. In linear algebra, a linear transformation can be completely
determined by the transformations made to the basis vectors (as any vectors are linear combination
of the basis vectors). We could define a fixed world frame W (with principle axes X,Y, Z) and a
rotating body frame C (with basis vectors r1, r2, r3).

3

1. SO(3): ROTATIONS IN RIGID-BODY MOTION Draft — Tuesday 22nd May, 2018

Figure 1: Relative rotation between world frame W and body frame C [1, p. 23]

Note: The standard right-handed Cartesian coordinate system is used throughout the dis-
cussion. Rotations by definition preserves this handedness.

C is aligned with W before rotation. After the rotation illustrated in Figure 1, the corresponding
rotation matrix is:

R = [r1, r2, r3] (1.5)

Meaning of Elements in Rotation Matrix

The columns of a rotation matrix represents the rotation of each basis vectors. As each vector
to be rotated is defined by the linear combination of those basis vectors, the vector rotation
in the column space (R3) is fully defined by the rotation matrix.

While it is always true that rotations can be represented by matrices, matrix representation may
not be the most concise and numerically stable one. Rotation matrix has the advantages of doing
vector rotation operation efficiently. Quaternion equivalent operation requires implicit quaternion-
matrix conversion which is more costly compared to direct matrix operation [4]. However, quaternion
representation gives superior numerical properties and reduction on data storage space.

1.3 Axis-Angle Represented in Matrix Form

As we have shown, the original axis-angle representation describe rotation operation by some alge-
braic equation. It has been successful in expressing rotation using 4 numbers (unit vector u and
scalar angle φ) or 3 numbers (if we define a rotation vector v = φu). It is a big advantage over the
matrix representation where 9 numbers are needed, with 6 constraints.

However, algebraic operation is less structured than matrix multiplication, and algebraic operation
struggles to perform composition (combining multiple rotation into one). Matrix representation is
superior in terms of computation efficiency and ease of implementation on computer. Therefore, we
have the motivation to convert axis-angle representation into the equivalent matrix form.

4

1. SO(3): ROTATIONS IN RIGID-BODY MOTION Draft — Tuesday 22nd May, 2018

1.3.1 Convert Axis-Angle to Rotation Matrix (Rodrigues’ Formula)

If we factor and expand the Rodrigues’ rotation formula (1.3) into matrix form, we could obtain
Rodrigues’ rotation matrix:

Rodrigues’ Rotation Formula: x′ = x cosφ+ (u× x) sinφ+ u(u · x)(1− cosφ) (from Eq. 1.3)

Rodrigues’ Rotation Matrix: R(u, φ) = I + sinφ[u]× + (1− cosφ)[u]×
2

(1.6)

where [u]× means skew-symmetric matrix defined by vector u,

[u]× ,

 0 −uz uy
uz 0 −ux
−uy ux 0

 (1.7)

We could visually inspect that every 2π repetition in φ results in the same R. Expanding into
elements would obtain:

Figure 2: Axis-angle representation to SO(3) matrix elements [3, p. 86]

1.3.2 Convert Axis-Angle to Rotation Matrix (Exponential Map)

The conversion described in the previous section is still cumbersome, and there exists a more math-
ematically concise expression converting between axis-angle and matrix form - exponential map.

Given a rotation trajectory R(t) : R→ SO(3) which describe a continuous rotation motion, at any
moment we must have:

R(t)RT (t) = I (1.8)

By taking derivative on both sides, we could prove that Ṙ(t)RT (t) is a skew-symmetric matrix. We
can then define:

[ω(t)]× = Ṙ(t)RT (t) (1.9)

Ṙ = [ω(t)]×R(t) (1.10)

We also know that the space of all 3× 3 skew-symmetric matrices is denoted by:

so(3) = {[ω]× ∈ R3×3 | ω ∈ R3} (1.11)

By assigning R(t) as identity, we can interpret so(3) as the tangent space or velocity space at the
identity of the rotation group SO(3). Intuitively, we can think of ω(t) as the vector of instantaneous
angular velocities. [2, p. 17][1, p. 26]

We could proceed to express SO(3) in terms of so(3). By assuming ω(t) = constant = ω, we could
solve equation (1.10) by:

R(t) = e[ω]×tR(0) (1.12)

5

1. SO(3): ROTATIONS IN RIGID-BODY MOTION Draft — Tuesday 22nd May, 2018

where e[ω]×t is also the state transition matrix for linear ODE ẋ(t) = [ω]×x(t). Since R(t) and R(0)
are rotation matrices, e[ω]×t must be rotation matrix as well. By assigning v = w∆t, in general we
can state that the exponential of a 3× 3 skew-symmetric matrix is a rotation matrix [2, p. 17]:

R = e[v]× (1.13)

Therefore, we could relate each skew-symmetric matrix with a rotation matrix. This is known as
the exponential map:

exp: so(3)→ SO(3); [v]× 7→ e[v]× (1.14)

From R3 to Rotation Matrix R

Any vector in R3 could be mapped to a rotation matrix using the exponential map (by first
converting R3 into a unique skew-symmetric matrix). In fact the vector is called the rotation
vector v = φu.

After manipulation and Taylor expansion [2, p. 18], we could obtain:

R(v) = e[v]× = eφ[u]× = I + sinφ[u]× + (1− cosφ)[u]×
2

= R(u, φ) (1.15)

using v = φu

which is the Rodrigues’ rotation matrix. This shows the axis-angle representation and exponential
map are equivalent. The exponential form of rotation is another way of expressing axis-angle
rotation.

Properties of Exponential Map:

1. Exponential map takes in three independent parameters in R3, which could be inter-
preted as rotation vector.

2. Exponential map converts the axis-angle representation (i.e. the rotation vector) to a
rotation matrix.

Therefore, we could define a rotation matrix from a rotation vector v = φu. This definition allow
as to reduce the parameters from 9 to 3. We could interpolate rotations conveniently using such
rotation vector. However, we still have difficulties to use axis-angle representation to perform rotation
composition. This inspires us to explore alternative multiplication rules to allow rotations to be
combined directly in the axis-angle “domain”, without explicit conversion to matrices. This is
perhaps one of the motivation to use a new quaternion representation.

6

2. SO(3) REPRESENTED BY QUATERNIONS Draft — Tuesday 22nd May, 2018

2 SO(3) Represented by Quaternions

2.1 Motivations

It is well-accepted to describe orientation in two-dimension using complex numbers a+ bi, and a 2D
rotation could be performed as multiplications of the complex numbers, which is mathematically
defined. Following the multiplication rule, Euler’s Formula could be verified and used for conver-
sion between complex number and polar representation. The complex number construction makes
describing rotation in 2D systematic.

Inspired by this, we could extend the concept of complex number to describe rotation in higher
dimensions. In R3, it turns out to be quaternions.

Quaternions gives an alternative mathematical construct to 3D rotations, allowing composition of
rotations without relying on linear transformation and matrices. There are less redundant elements
compared to matrix counterpart (one versus six), and it is numerically stable.

However, there is no fixed single convention on how multiplication of quaternions should be defined.
This induces much confusion across literature. Therefore, we will explore those conventions and
decide the convention to use in our research.

2.2 Two Definitions of Quaternion Multiplications

If we ignore the ordering of scalar and vector components (which makes no major differences), the
definition of quaternion is universal:

q = qw + qxi + qyj + qzk ⇔ q = qw + qv (2.1)

where qv is the vector component of the quaternion, and qw is the scalar part.

There are two different popular conventions to define multiplication of two quaternions. Under the
Hamilton quaternion multiplication � [2, p. 6], the quaternion vectors i, j,k obey right-hand rule
(e.g. ij = −ji = k); whereas under the JPL quaternion multiplication ⊗, the quaternion vectors
i, j,k obey left-hand rule (e.g. ji = −ji = k).

Note: The handedness here is not relevant to the handedness of the coordinate system. In
both cases, the standard right-handed Cartesian coordinate system is used.

The � quaternion multiplication can be referred as the Hamilton, standard or historical convention,
whereas the ⊗ counterpart can be referred as the JPL, alternative or natural convention.

Following the above definition, by doing term-by-term multiplication:

Hamilton: p� q ,
[

pwqw − pTv qv
pwqv + qwpv + pv × qv

]
(ij = −ji = k) (2.2)

JPL: p⊗ q ,
[

pwqw − pTv qv
pwqv + qwpv − pv × qv

]
(ji = −ji = k) (2.3)

The operator × denotes cross product (standard right-hand rule convention). p � q can be called
right-handed multiplication, whereas p⊗ q is called left-handed multiplication.

7

2. SO(3) REPRESENTED BY QUATERNIONS Draft — Tuesday 22nd May, 2018

Due to the anti-commutativity of the vector cross products, we observe [5]:

p� q = q ⊗ p (2.4)

The proof of equation (2.4) can be found in [6, p. 467].

Effectively, the two conventions are defined to have flipped multiplication operations. The
underlying reason for the two different conventions lies in the process of relating quaternions with
either active or passive rotations. This will be explained in the following sections.

Some Useful Properties of Quaternions
The identity quaternion is defined as,

q1 = 1 =

[
1
0

]
(2.5)

The conjugate of a quaternion is defined as,

q∗ = qw − qv =

[
qw
qv

]
(2.6)

and

(p� q)∗ = q∗ � p∗ (2.7)

The inverse of a quaternion is defined by,

q � q−1 = q−1 � q = q1 (2.8)

and for unit quaternion

q−1 = q∗ (2.9)

2.3 Unit Quaternion and Axis-Angle Representation

Quaternion is just one of many possible representations of SO(3). To reiterate, SO(3) is the special
orthogonal matrices in R3×3, commonly referred as the rotation group[1, p. 24] (orthogonal matrices
with determinant of 1). The advantages of using quaternions to represent rotations include their
numerical efficiencies (4 parameters compared to 9 in rotation matrices) and lack of singularity (i.e.
no gimbal lock issues). In contrast to Euler angles which operates on the concept of row, pitch
and yaw, quaternion representation is linked to rotation group through the axis-angle
representation.

The axis-angle rotation representation utilises four parameters (three for unit vector of rotation axis
u, and one for rotation angle φ). Similar to the idea of representing two-dimensional rotation using
complex numbers a+ bi, two more components are introduced to represent rotation in 3D, making
the representation in the form a+ bi + cj + dk.

The four components in quaternions can be closely related (but not the same!) to the four parameters
used to represent axis-angle rotation. It turns out that all axis-angle rotation could be represented
by a unit quaternion. The mapping between the a unit quaternion and a axis-angle rotation are
defined to be (an extension of Euler’s formula) [2, p. 22]:

8

2. SO(3) REPRESENTED BY QUATERNIONS Draft — Tuesday 22nd May, 2018

q , eφu/2 = cos
φ

2
+ usin

φ

2
=

[
cosφ2

usinφ2

]
(2.10)

Note: The exponential mapping from rotation vectors to quaternions are identical regardless
of the conventions used. Right-hand rule always applies.

As we can see, this formula maps rotation vector (axis-angle representation) to a unit quaternion
||q|| = 1. In fact, we will represent any rotation using unit quaternions. From here onwards,
quaternion q will be assumed as a unit quaternion, unless stated otherwise.

For unit quaternions, its conjugate equals to its inverse:

q−1 = q∗ (2.11)

To visualise, taking the inverse is equivalent to keep the rotation angle φ but to reverse the rotation
axis u. Therefore, by taking an inverse, q−1 performs a opposite rotation compared to q.

Also, negated quaternions map to the same rotation matrix [1, p. 41]:

R(q) = R(−q) (2.12)

Notice, quaternions with φ multiples of 2π results in the same quaternion.

In summary:

Properties of Unit Quaternions:

1. Unit quaternions represent rotations.

2. Inverse or conjugate of a unit quaternion represents the inverse rotation.

3. Negated unit quaternions represent the same rotation.

4. There is a two-to-one mapping from unit quaternions to rotation group SO(3) (double
cover [2, p. 23]).

2.4 Double Quaternion Product as Rotation Group

In previous sections, we have shown that axis-angle representation perform rotations to vectors based
on defined algebraic operations or matrix multiplications. By mapping axis-angle representation to
quaternions, we could define another way to perform rotation - double quaternion product.

For Hamilton convention, the double quaternion product is defined as:

x′ = q � x� q∗ (2.13)

9

2. SO(3) REPRESENTED BY QUATERNIONS Draft — Tuesday 22nd May, 2018

Whereas for JPL convention, the double quaternion product is:

x′ = q ⊗ x⊗ q∗ (2.14)

= (x⊗ q∗)� q
= q∗ � x� q
= q−1 � x� (q−1)∗ (2.15)

It could be proved that the double quaternion operation is equivalent a rotation operation, where
the components of q (converting to u and φ) can be interpreted as axis-angle representation, using
the inverse of equation (2.10). For actual C++ implementation of the inversion could be found in
Appendix A.

Since q−1 multiply q is defined to be identity quaternion q1 = 1, the double quaternion products in
the two conventions perform the exactly the opposite rotation (think of the rotation vector).

Rotation using Double Quaternion Products:

The different definitions of multiplication of quaternions in Hamilton and JPL conventions
result in opposite rotation operations, from the same quaternion. This distinctions
create the concept of active and passive rotations, discussed later.

To further convince ourselves that the two conventions results in opposite rotations from the same
quaternion number, we could expand out the double quaternion product to the rotation matrix form:

Hamilton [2, p. 25]: R(q) = (q2
w − 1)I + 2qvq

T
v + 2qw[qv]× (2.16)

JPL [7, p. 8]: C(q) = (q2
w − 1)I + 2qvq

T
v − 2qw[qv]× (2.17)

Note, the skew operator []× is defined consistently in both conventions [2][7].

Evidently, the two rotation matrix are transpose (i.e. inverse) of each other:

R(q) = CT (q) (2.18)

2.5 Activeness of Transformation

We would first define the active and passive transformations. For an active rotation, what the
transformation does is to rotate the vectors (e.g. body subject) physically in space, with reference to
a fixed frame (e.g. world). This type of rotation is used in most mathematics literature. In contrast,
a passive rotation is where the vector remains at the same location physically, but the rotation is
performed to the reference frame instead. Geometrically, the active and passive rotations are
inverse operations of each other.

2.5.1 Activeness of Rotation Matrix

By inspecting the Rodrigues’ rotation formula, axis-angle representation is an active rotation. This
is because the formula assumes rotation on the vector x in a fixed frame (standard basis), referring
to the equation 1.3. .

In contrast, rotation matrix R by itself does not contain any information about activeness. Matrix
merely represents linear transformation in its most intrinsic format: transformations made to each

10

2. SO(3) REPRESENTED BY QUATERNIONS Draft — Tuesday 22nd May, 2018

basis vectors (equation 1.5). However, if we start to construct mapping from a particular rotation
representation to rotation matrices, we have to adopt a defined activeness.

Rotation matrix R(u, φ) formulated by Rodrigues’ Rotation Matrix (1.6) is an active rotation, due
inheriting the activeness of axis-angle representation.

Similarly, rotation matrix R(v) defined using exponential map is an active rotation as well, as
R(v) = R(u, φ) are equivalent.

Now we are left with the activeness of R(q) and C(q). Strictly speaking, quaternion utilises the con-
cept of axis-angle representation, and therefore quaternion q by itself represents an active rotation.
However, the two conventions gives are two different mapping rules from quaternion to rotation
matrix, namely R(q) and C(q), we effectively have both choices open.

It could be proved that [2, p. 23]:

q � x� q∗ = R(q)x = R(u, φ)x (2.19)

Therefore, R(q) is an active rotation. Since C(q) = RT (q) and the fact that active and passive
rotation is inverse of each other, C(q) is a passive rotation.

Summary of Activeness of Transformations:

Representations Activeness
Axis-Angle (u, φ) Active

Rotation Matrix R -
Rotation Matrix R(u, φ) or R(v) Active

Quaternion q Active
Rotation Matrix R(q) Active
Rotation Matrix C(q) Passive
toRotationMatrix() a Active

aImplementation from Eigen C++ Library, more from Appendix B

To further illustrate the distinctions between active and passive notations, refer to Figure 3.

2.5.2 Standarising Notations

From the previous section, we found out the same quaternion could correspond to totally opposite
rotation matrices. To better interpret their significance, let us define the notation:

qab = rotation from basis b to basis a (2.20)

= orientation of basis a w.r.t. basis b (2.21)

qab = (qba)−1 = (qba)∗ (2.22)

As q correspond to a pair of u and φ, this quaternion represent the rotation of basis b to align with
basis a, using the axis-angle pair (u, φ). In other words, quaternion qab represents the active rotation
of basis b to align with basis a.

To reiterate, Hamilton convention represents active rotation, and we denote the corresponding
rotation matrix as R(q); JPL convention represents passive rotation, and we denote the
corresponding rotation matrix as C(q) = RT (q).

11

2. SO(3) REPRESENTED BY QUATERNIONS Draft — Tuesday 22nd May, 2018

Physical Three-Dimensional
Orientation / Rotation

Unit
Quaternions

Quaternions

2-to-1
mapping

Active
Rotation

Transformation

Passive Rotation
Transformation

vector x

x rotated by the axis and angle
specified

x is expressed in a new frame; the
new frame is relative to the original

frame by axis and angle specified

left-handed multiplication
right-handed multiplication

Axis-Angle
Representation

mapping

Euler
Angles

mapping Bad: Gimbal Lock

Rodrigues
rotation matrix

Change of Basis
Operation

Figure 3: Illustration of Relationships between Active and Passive Transformations

Interpreting R(q) and C(q):

Representation Meaning
qab orientation of basis a w.r.t. basis b,

R(qab) = CT (qab)
rotate vector expressed in basis b, by amount specified by
quaternion q
change the vector basis from a to b

C(qab) = RT (qab)
change the vector basis from b to a
rotate vector expressed in basis a, by amount specified by
quaternion q−1 = qba

As a rule of thumb: for rotating vectors physically in space, we use R(q); for changing of basis from
b to a, we use C(qab) or equivalently RT (qab).

2.6 Rotation Composition

For Hamilton convention, rotation composition is performed in the flipped order [2, p. 26]. Rotation
from c to a means rotation from b to a, and then c to b.

qac = qbc � qab (2.23)

R(qac) = R(qbc)R(qab) (2.24)

That is, to rotate vector by amount specified by qac (i.e. orientation of basis a in basis c), R(qab) is
performed before R(qbc). This is a local-to-global composition approach [2, p. 34]. In this case,
basis a is the most local, and basis c is the most global.

12

2. SO(3) REPRESENTED BY QUATERNIONS Draft — Tuesday 22nd May, 2018

In contrast, for JPL convention, rotation composition is more “natural”: change of basis from c to
a means change from c to b, and then b to a.

qac = qab ⊗ qbc (2.25)

C(qac) = C(qab)C(qbc) (2.26)

That is, to change basis specified by qac (i.e. change from basis c to basis a), C(qbc) is performed
before C(qab). This is a global-to-local composition approach.

Again, the distinctions between the rotation composition rule is determined by the difference of
definition of quaternion multiplication in the two conventions. They are describing the same rotation
phenomenon using the reversed language.

2.7 Some Example Applications

Error Quaternions (Local) In a physical system, if we want to express the true quaternion q
in terms of the quaternion estimate q̂, we could define the error quaternion δq in both conventions
equivalently [7, p. 16][2, p. 43]:

q = δq ⊗ q̂ (2.27)

q = q̂ � δq (2.28)

Note that δq is defined in the local frame of reference in this case.

If we assume the error quaternion is very small in rotation (φ ≈ 0), we can use small angle approxi-
mation [7, p. 8] [2, p. 43]:

δq =

[
cos(φ/2)
u sin(φ/2)

]
≈
[

1
1
2δv

]
(v = φu) (2.29)

By Taylor expansion up to the linear term [2, p. 43]:

R(δq) = e[v]× ≈ I + [δv]× (2.30)

For JPL convention, similar results could be obtained [7, pp. 8–9]:

C(δq) = e−[v]× ≈ I − [δv]× (2.31)

We could call R(δq) and C(δq) the error rotation matrices, and

R(δq) = CT (δq) (2.32)

Time Derivatives (Local) Following from the error quaternions, we could express the time
derivatives of quaternion. We define:

ω(t) ≡ dδv

dt
≡ lim

∆t→0

∆δv

∆t
(2.33)

Then it could be shown that the time derivative of q is [2, p. 44]

q̇ =
1

2
q �

[
0
ω

]
=

1

2
q � ω (2.34)

=
1

2
Ω(ω)q (2.35)

13

2. SO(3) REPRESENTED BY QUATERNIONS Draft — Tuesday 22nd May, 2018

where

Ω(ω) ≡
[

0 −ωT
ω −[ω]×

]
=

0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (2.36)

This also has a matrix equivalent form,

Ṙ = R[ω]× (2.37)

Error Rotation Matrices For a given scenario, we know the relationship between inertial frame
and world frame:

C(qiw) = change of frame from world to inertial (2.38)

or

R(qiw) = CT (qiw) = C(qwi) = change of frame from inertial to world (2.39)

We could obtain the following identity equations:

C(qiw) = C(qi
î
)C(qîw) ⇐⇒ qiw = qi

î
⊗ qîw (2.40)

R(qiw) = R(qîw)R(qi
î
) ⇐⇒ qiw = qîw � qiî (2.41)

where î is the estimated inertial frame, and qi
î

is the error quaternion δq.

14

A. QUATERNION TO AXIS-ANGLE CONVERSION Draft — Tuesday 22nd May, 2018

Appendix A Quaternion to Axis-Angle Conversion

Code excerpt from Eigen C++ Library which convert quaternion back into axis-angle repre-
sentation [8].

EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=

(const QuaternionBase<QuatDerived>& q)

{

EIGEN_USING_STD_MATH(atan2)

EIGEN_USING_STD_MATH(abs)

Scalar n = q.vec().norm();

if(n<NumTraits<Scalar>::epsilon())

n = q.vec().stableNorm();

if (n != Scalar(0))

{

m_angle = Scalar(2)*atan2(n, abs(q.w()));

if(q.w() < Scalar(0))

n = -n;

m_axis = q.vec() / n;

}

else

{

m_angle = Scalar(0);

m_axis << Scalar(1), Scalar(0), Scalar(0);

}

return *this;

}

15

B. QUATERNION TO ROTATION MATRIX CONVERSION IN C++Draft — Tuesday 22nd May, 2018

Appendix B Quaternion to Rotation Matrix Conversion in
C++

Code excerpt from Eigen C++ Library which convert quaternion to rotation matrix repre-
sentation [9]. It shows that the mapping gives a active rotation (comparing with the formula
in [2, p. 25]).

template<class Derived>

EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3

QuaternionBase<Derived>::toRotationMatrix(void) const

{

Matrix3 res;

const Scalar tx = Scalar(2)*this->x();

const Scalar ty = Scalar(2)*this->y();

const Scalar tz = Scalar(2)*this->z();

const Scalar twx = tx*this->w();

const Scalar twy = ty*this->w();

const Scalar twz = tz*this->w();

const Scalar txx = tx*this->x();

const Scalar txy = ty*this->x();

const Scalar txz = tz*this->x();

const Scalar tyy = ty*this->y();

const Scalar tyz = tz*this->y();

const Scalar tzz = tz*this->z();

res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);

res.coeffRef(0,1) = txy-twz;

res.coeffRef(0,2) = txz+twy;

res.coeffRef(1,0) = txy+twz;

res.coeffRef(1,1) = Scalar(1)-(txx+tzz);

res.coeffRef(1,2) = tyz-twx;

res.coeffRef(2,0) = txz-twy;

res.coeffRef(2,1) = tyz+twx;

res.coeffRef(2,2) = Scalar(1)-(txx+tyy);

return res;

}

16

REFERENCES Draft — Tuesday 22nd May, 2018

References

[1] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An invitation to 3-d vision: from images to
geometric models. Springer Science & Business Media, 2012, vol. 26.

[2] J. Sola, “Quaternion kinematics for the error-state kalman filter,” arXiv preprint arXiv:1711.02508,
2017.

[3] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and Control. Cambridge
University Press, 2017.

[4] D. Eberly, “Rotation representations and performance issues,” Magic Software, Inc., Chapel
Hill, NC, 2002.

[5] H. Sommer, I. Gilitschenski, M. Bloesch, S. M. Weiss, R. Siegwart, and J. Nieto, “Why and
how to avoid the flipped quaternion multiplication,” arXiv preprint arXiv:1801.07478, 2018.

[6] M. D. Shuster, “A survey of attitude representations,” Navigation, vol. 8, no. 9, pp. 439–517,
1993.

[7] N. Trawny and S. I. Roumeliotis, “Indirect kalman filter for 3d attitude estimation,” University
of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, vol. 2, p. 2005, 2005.

[8] (2008). Angleaxis.h, eigen c++ library, [Online]. Available: https://eigen.tuxfamily.org/
dox/AngleAxis_8h_source.html.

[9] (2009). Quaternion.h, eigen c++ library, [Online]. Available: https://eigen.tuxfamily.org/
dox/Quaternion_8h_source.html.

17

